Paper Id: 199359

_			
R	۸ll	N	'n

B. TECH (SEM III) THEORY EXAMINATION 2019-20 BASICS DATA STRUCTURE AND ALGORITHMS

Time: 3 Hours Total Marks: 100

 $\textbf{Note1.} A \ \texttt{ttempltSectiohfsequianeymissidgtahenhoose} \ \texttt{tably}.$

SECTION

1. Attempkhuestionbrief.

 $2 \times 10 = 20$

Qno.	Question	Marks	CO
a.	What is primitive data type?	2	CO1
b.	Define sparse matrix.	2	CO1
c.	What is PUSH and POP operation.	2	CO2
d.	What are two fields in Link list	2	CO2
e.	What is Binary Tree?	2	CO3
f.	What is AVL Tree.	2	CO3
g.	Explain Adjacency list for any graph	2	CO4
h.	Explain connected components	2	CO4
i.	What is unstable sorting?	2	CO4
j.	What is hoisting?	2	CO4

SECTION B

2. Attempt any three of the following:

 $3 \times 10 = 30$

Qno.	Question	Marks	CO
a.	Explain asymptotic notations. Define Big-Oh notation and find the	10	CO1
	complexity of the following recursive function $T(n) = 4T(n/2) \cdot n \cdot n$		
	$T(n) = 4T(n/2) + n\log n$		
b.	Show the addition of given polynomials using linked list:	10	CO2
	P=3X^2+2X+7 Q=5X^3+2X^2+X		
c.	What is binary search tree? Make a binary search tree for following	10	CO3
	sequence: 8 7 17 25 23 6 9 2 15 22 12 1		
d.	Differentiate between BFS and DFS with suitable example.	10	CO4
e.	What is stable sorting? Explain quick sort in detail.	10	CO4

SECTION C

3. Attempt any one part of the following:

 $1 \times 10 = 10$

Qno.	Question	Marks	CO
a.	How do you find the complexity of an algorithm? What is the relation	10	CO1
	between the time and space complexities of an algorithm? Justify your		
	answer with an example		
b.	Define queue. Explain various operations performed on queue with	10	CO5
	suitable example		

4. Attempt any *one* part of the following:

 $1 \times 10 = 10$

Qno.	Question	Marks	CO
a.	What is recursion? Write a C code to solve tower of Hanoi problem.	10	CO2
b.	Write an algorithm for conversion of infix to postfix expression.	10	CO3
	Translate infix expression into its equivalent post fix expression:		
	A * (B+D)/E-F * (G+H/I()		

5. Attempt any *one* part of the following:

1	v	10	=	1	N
	А	10	_	т,	U

Qno.	Question	Marks	CO
a.	Draw a binary tree which following traversal:	10	CO4
	In order: DBHEAIF J CG		
	Preorder: ABDEHCFIJG		
b.	What is Threaded Binary Tree? Explain insertion and deletion	10	CO4
	algorithms on threaded binary trees		

6. Attempt any one part of the following:

$1 \times 10 = 10$

Qno.	Question	Marks	CO
a.	Differentiate between Prims and Kruskal Algorithms with example.	10	CO2
b.	Write Short notes on:	10	CO2
	i) Walk		
	ii) Path		
	iii) Topological sort		

7. Attempt any *one* part of the following:

$1 \times 10 = 10$

Qno.	Question	Marks	СО
a.	Explain merge sort. Discuss its worst-case time complexity.	10	CO4
b.	What is B-Tree? Differentiate between B-Tree & B+Tree.	10	CO3
	downloaded from Continued		